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A mixed explicit-implicit scheme is used to solve the tlme-dependent thin-layer approximation of the Navier-
Stokes equations for a supersonic laminar flow over an Inclined body of revolution. Test cases for Mach 2.8 flow

over a cylinder with 15-deg flare angle at angles of attack of 0, 1, and 4 deg are calculated. Good agreement is
obtained between the present computed results and experimental measurements of surface pressure. A pair of
vortices on the leeward and a peak in the normal force distribution near the flared juncture are predicted; the
role of circumferential communication is discussed.

Nomenclature

A = right-hand side of Eq. (5)

C/x =skin-friction coefficient along
streamwise direction

co = specific heat at constant volume

D = diameter of cylindrical portion
E =total energy, E=ei+0.5 (u2+

v _ + w: )

F,G,H =transport inviscid flux vectors, Eq.
(1)

Go = transport viscous flux vector, Eq. (1)
L = length of cylindrical portion
L_,L_,L, =split finite difference operators in

(/_,,7,¢,)
L,,,L_p = hyperbolic and parabolic operators in

rl direction

M** = freestream Mach number

Pr = Prandtl number, 0.72

P = static pressure, p = (3' - 1)pe,
P= = freestream static pressure

Q = forcing terms in Eq. (1)

Q_, QI, Qo = split forcing terms in L_,L_,, L_p
R = gas constant

ReL = Reynolds number based on length L
r = radial direction

ro (x),rf(x),r o (x) = radius of body, fine mesh, and outer

coarse mesh, respectively
t =time

At, Atf =time increment of outer and inner
meshes

U = conservative variables (p,pu,pv,
pw, pE)

U' =variables in Lvr operator (u',v',
W, tl' 2, u ' 2, w2,ei )

u= = freestream velocity
u,v,w =velocity components in (x,r,6)

coordinates

u',o' =transformed velocity components,

u' =v+vtanO,; v' =v-utanO i
x = axial direction
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= angle of attack

= ratio of specific heat, 3' = 1.4

= minimum fine mesh spacing
= flare angle

=tan - _(r_) local body slope angle

=second viscosity coefficient, k=
- 2A#

= molecular viscosity coefficient

= viscosity parameter in Eq. (5)
= transformed cylindrical coordinates

= density

= thin-layer approximated viscous
terms

= energy dissipation and diffusion
terms

Introduction

UPERSONIC flow over a body of revolutio.n at angle of
attack is of interest to both research and design engineers.

A typical problem is to predict the nature of the three-

dimensional flowfield around a cylinder with flared afterbody

(Fig. 1). This configuration is seen in missiles, rockets, and

space launch vehicles, in which the flare provides a natural

fairing for multistage spacecraft or a simple means for
shifting the center of pressure rearward and thereby im-

proving the margin of static stability. It can also be used to

simulate the underexpansion plume of rockets.

The pressure rises, due to the flare-shock, induce flow
recirculation near the corner. At zero angle of attack, the flow
is two-dimensional (axisymmetric) and the recirculation is

closed as a toroid, provided the flow is steady. At angle of
attack, the flare shock is stronger on the windward and

weaker on the leeward. This variation of shock strength
results in a pressure variation in the circumferential direction

which induces a strong crossflow and makes the shock-wave

and boundary-layer interaction highly three-dimensional. As

the angle of attack increases, the crossflow first separates
inside the recirculation region near the corner of the lee side.

As the angle of attack is increased further, the crossflow also

separates around the cylinder and the flare. Figure 2 shows a
china clay laminar flow pattern and a sketched three-

dimensional separation model experimentally observed by

Ericsson et al. _ and Fig. 3 shows a fluorescent oil

visualization of a turbulent flow on a 23 deg cone frustum by
Chyu and Coe. 2 Both figures indicate a circumferential

communication and a pair or pairs of vortices shedding into
the lee-side "wake."

Because of the complexity, previous theoretical and ex-

perimental studies considered the flare and lee-side
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Fig. 1 Supersonic flows over cylinder with flare.

_, deg

separations separately. The flare recirculation is studied as
flow over a compression corner 3-_ and the lee-side separation
is modeled as a flow over a cone. 6"8 To understand the

detailed structure of the complete flowfield, however, the

problem should be considered as a whole, and a complete
three-dimensional problem must be solved.

In the present study, a rapid, mixed explicit/implicit

numerical scheme 9 is used to solve the time-dependent thin-

layer approximation of the three-dimensional Navier-Stokes

equations for supersonic laminar flow over a hollow cylinder
with a flare. The use of a hollow cylinder avoids the com-

plication of prescribing the upstream boundary conditions.
The objectives of this study are to investigate the three-

dimensional shock-wave and boundary-layer interaction, to

examine the associated three-dimensional separated flow

structure, and to assess the role of circumferential com-

munication in this interaction flowfield. The experiments

conducted by Robinson I° are selected for comparison at
Mach number 2.8 and unit Reynolds number 0.3168 x 105/cm

with various incident angles. Good agreement is obtained

between the present computed results and experimental
measurements of surface pressure and normal force

distribution. The existence of a pair of vortices is also clearly
observed.

Pt= = 15 in Hg

Fig. 3 Fluorescent oil studies on a cylinder with 23 deg cone
frustrum.

M =1.2,_=4 °
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\ Fig. 2 A china clay flow pattern

_ and a sketched three-dimensional model.
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Analysis

Thin-Layer Approximation

Figures 4a and 4b show cross-sectional views of the

computational domain in the (x,r) and (r,_) planes. Here, 0

is the cone half-angle of the flare. The flow is assumed to be

symmetric in 4_ and hence only the half plane, 0 deg_<_ 180

deg, is needed. The mesh is uniformly spaced in both x and q_
directions. In the r direction, a fine mesh spacing is used in the

region near the body, r b < r <_r/, to resolve the viscous forces,
and a coarse mesh spacing is used in the outer region,

rl<r<ro, where viscous effects are negligible.
The basic equations of the present analysis are the time-

dependent compressible Navier-Stokes equations. In high

Reynolds number flows, however, the viscous effects are
confined near the wall boundary and are dominated by the

viscous terms associated with the derivative in the direction

normal to the wall. The viscous terms with the derivatives

along the body are comparatively small and insignificant.

This concept was first discussed by Prandtl in the develop-
ment of boundary-layer theory and has been applied and

extended to various techniques, such as the parabolized

Navier-Stokes equations, or higher order boundary-layer

theory for many complex flowfield calculations (cf., Refs. 7,

8, 11-13). The recent development of the thin-layer ap-

proximation TM is based on that concept, with retention of all
the unsteady and nonlinear inviscid terms of the Navier-

Stokes equations. The retention of time-dependency in the

governing equations, coupled with the direct inclusion of all
inviscid terms in the calculation, permits the solution to

progress naturally from an arbitrary initial condition to an

asymptotic steady state and, hence, also permits an in-
teraction flowfield to develop as time progresses. This ap-

proximation has been tested in the calculation of several
flowfield problems and the results confirm its validity and

applicability._4-_5 Consequently, the thin-layer approximation
is used in the present study: All viscous terms associated with

derivatives along the body are neglected while those with
second-order derivatives across the thin layer alone are

retained. Written in weak conservative form in transformed

cylindrical coordinates, the thin-layer approximated Navier-

Stokes equations are as follows:

OrU OrF Or(G-G v) OrH _

o-7 + -_ + o. + r--gg+_e=o (1)

where

I_=x, _=r-rb(x), v' =v-utanOi

tanOi =r_ (x) =0 for x<L

=tanO for x>L

p

pu

U= pv

pw

. pE

n _

f _

pw

puw

pl)w

pw 2 +p

(pE+p)w

pu

pu 2 + p

puu

pwu

(pE+p)u
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G _

pU'

pUV' --ptanOi
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Fig. 4 Cross sections of the computational domain, a) (x,r) plane; b)
(r,¢) plane.
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o,_ --tan0,O_x ]
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7# Oe,

_x =°=u+arxV+O*x w- -_r _ tanO_

¢_ r = Grxlg "Jr CTrrO")" GrO, W "_ "_IA Oei

Pr Orl

0 Ou
o= = X -_- (v - utan0, ) - 2t_ q- tan0i

o_7 ml

O Ov

a,, = h -_ ( v - utanO i ) -2# 0-_

0 O

o,_, =X _-_ (v-utanO,), o,_=#_-_ (u-vtanO,)

O O

a,, =#-_ w, a,_=-l_-_ wtanO i

Here (u,v,w) are velocity components in axial, radial, and
azimuthal, (x,r, cb), directions; p,p, and E are density,

pressure, and total energy, with E= e, + 0.5 (u 2 + v 2 + w 2),

where e i is the specific internal energy. The perfect gas
relations are p= (7- l)pe_. The flow is assumed laminar and

the molecular viscosity # is evaluated by Sutherland's for-
mula.

Time-Split Numerical Technique

The governing equations, Eqs. (!), are split into three
groups corresponding to the coordinate directions for
treatment by three operators, viz.,

OrU OrF

OrU 1OrH

L,: at + r--gg-=0

OrU Or(G-Go)

L_ : Ot + Oft
+Q,+Q_=O
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where

0

-/nan#/

0

0

0

QI

0

/nanO i

-p-pw 2

pow

0

0

0

a##

- O'r_

0

The conventional two-step, explicit MacCormack scheme '6 is

used in the L_ and L# operators and in the L_ operator for the
outer coarse mesh region. In the fine-mesh tuner region near

the body, the L_ operator is split further into hyperbolic, L_h,
and parabolic, L_p, operators for the inviscid and viscous
terms,

OrU OrG

L_,: _ + _ +QI=0 (2)

arU arG v

Lw: at aTi +Q_=O (3)

Substitution of Uand G in Eq. (2) yields

[ Or' , _v'\ Op ow 2 ]

Pk---_ -- = --+v -'_--/+ (l+tan20_) 0_ r

Op v, ".o_p_ Or' [ (4)
Ot + =- I• -- o_l / + "/P-_-_ 7PV'r

)

Note that adding a term ptan0 i in Qt and subtracting it in Q_
is for convenience in the derivation of Eq. (4).

In the L_, operator, Eq. (4) is solved for v' and p by the

method of characteristics and then Eq. (2) is integrated in time

from t to t+At by the conventional predictor-corrector
scheme with v" and p as known values at t + ½At.

To compute the effect of the viscous terms in the inner

region, Eq. (3)can be rewritten as

¢9p=0 ' aU' 1 ( OUI)Ot clt _ vrsec20,-_ =a (5)

where

U t

u I

v"

w

14'2

13'2

w 2

e_

h _

- (t an0 i �or) a¢_

- (l/pr)o_

+ (I/or)o,#

-2A I

-2A 2

-2Aj

(AI + A2)cos:O i +A s

u" =u+tanOiv

J

Al= l_sec2Oi[--_ )2+ tanO......-__ ,P or u a¢¢

A 2 = (2p.+h) see20------2/(By' _2 1
O _--_-_/ + or v'°##

A3 = #sec20,/dw\2 1
p _ O---_ I -- .-r "arC)

and v is a viscosity parameter, equal to /_ for elements

u',w,u '2, and w2; equal to (2_+X) for elements v" and v'2;

and equal to yl_/Pr for element e i. The continuity equation

has no viscous term and, hence, is trivial to solve. It implies

that density is treated as a constant in time in the L,w
operator. To avoid using a costly block-tridiagonal
procedure, the total energy equation is split into three kinetic

energy u'_,v '_, and w 2 equations and an internal energy
equation. The kinetic energy equations are obtained by

multiplying the corresponding momentum equations by

u',v', and w, respectively, and the internal energy equation is

obtained by subtracting the three kinetic energy equations
from the total energy equation. Equation (5) is a parabolic
model equation of diffusion, and can be efficiently solved by

either a Crank-Nicolson or a first-order implicit difference

with a simple tridiagonal inversion. The right-hand side of
Eq. (5) is evaluated explicitly. In the present study, the u',v',

and w are solved first and the new values of u',v', and w are

then used to evaluate the dissipation terms A_,A2, and Aj
which in general may not be small. Details of the numerical
method are discussed in Ref. 9.

The complete numerical procedure is expressed as:

U _+2a' =L t (At)L# (At)L_ (2At)L# (At)L_ (At)

Outer region

xLnh (Ate)L,_, (Atj) L_ (2At])L# (2Atf)L_r (Atf)L_h (At])

Inner region

xL,, (Atf)L_r (Atf)L¢ (2Atf)L_ (2Atf)L_r (At/)L,, (At/)

Inner region

xU'

by which the solution is advanced two time steps from t to

t + 2At, where 2Atf = At. The maximum stable time step, At, is
determined by the CFL condition of the explicit operators.

Boundary Conditions

The coordinates are body-oriented and the flow at the

upstream boundary is assumed to be uniform at supersonic

freestream conditions (M_,, u**, p**, p** ). The angle of attack
is imposed by setting the upstream velocity components as

u=u**cos_,v=u**sin_coscb, and w=u**sin_sincb. The

downstream and far-field boundaries are positioned far
enough from the three-dimensional interaction region that

zero-gradient boundary conditions can be used. The sym-
metry condition is applied at _= 0 and 180 deg planes. The
wall is assumed impermeable and no-slip boundary conditions
are used. The wall is taken to be either isothermal or

adiabatic, and the wall pressure is evaluated using

ap
-- =0 at ,1=0
On

For our present case, the first mesh point is so close to the

wall that this pressure condition is appropriate. During the
calculations within the inner mesh, the flux and stress terms at

the internal boundary, r=ry(x), are saved, and their net
quantities are then used as boundary conditions for the outer
mesh flow calculations.

Results and Discussion

The experiments selected for comparison were conducted

by Robinson. _° The flow conditions are M**=2.8;

Re L =0.8× I06; 0= 15deg;D= 101.6mm; L=252.5 mm; and
c_= 0, I, and 4 deg. The wall is assumed adiabatic. A grid of
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Fig. 5 Comparison of surface pressure, a) _ = 0 deg; b) _ = l deg; c)

_=4deg.

A geometrically stretched fine mesh, 20 points in T/-direction,
is used near the body to _/D = 0.1397, with a minimum mesh

spacing (At/) rain = 0.5 L/:V_L

Figures 5a-5c show comparisons of the present computed

results with experimental measurements of surface pressure
for three incident angles: o<= 0, 1, and 4 deg. The agreement is
very good. Also shown in Fig. 5a are the inviscid solutions for

a sharp cone, two-dimensional wedge, and cylinder-flare,

respectively. In Fig. 5b, two meridian angles, ¢=0 and 180

deg, and in Fig. 5c, three meridian angles _=0, 90, and 180

deg, are shown. The inviscid solutions shown in Fig. 5c were

calculated by adding a 30 deg cone in front of the cylinder and
are presented to indicate the viscous effects at two meridian
angles, _ = 0 and 180 deg.

Note that, at an angle of attack, the "effective" flare angle
is larger on the windward and smaller on the leeward. If there
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M_" 2,8, a = 1 °, 0 = 15 °, y! - 5.49 mm

(al (r - rb) /yf " 0.0103 .._" (r - rbl/yf

Fig. 7 Unwrapped velocity plots (u' and w) for a = 1 deg.

M_ " 2.8, a " 4 °. O " 15 °, yf = 5.49 mm

................. _-_,_, ,,,... ................. I..; -:: -':.,---

................ .-, - ._',_---_I'//.,_-_ ---i..'" / .... iiii -_-'-_ _,'/-/_''"

...... "....... , ..... ." _:'_, t _.'- "-'_-_" ............ "'.i.. _.. ,_, . _ _-" _-

........... C- :_-_'_- :_

(|)

(c) (r - rb) lyf - 0.253

- ------.__._____

(dl (r - t b)/yf - 0,583

Fig. 8 Unwrapped velocity plots (u' and w) for ot = 4 deg.

were no circumferential communication or erossflow, the

streamwise recirculation should be larger on the windward
and smaller on the leeward. The existence of circumferential

communication by means of convention and diffusion of
crossflow, however, makes the flowfield behave oppositely.

The crossflow sweeps much of the low-momentum fluid from
the windward boundary layer to the leeward. This process

results in thinning and strengthening the windward boundary

layer, while at the same time thickening and weakening the

leeward boundary layer. Near the cylinder-flare juncture the
communication is more efficient and effective. While the flare

shock retards the flow, inducing streamwise recirculation, the

crossflow is stronger and the swept fluid indeed can be

carrying "negative" momentum. Overall, it leads to a for-
ward movement of separation on the leeward and an aft

movement on the windward, as can be seen in the pressure
rises and plateaus shown in Figs. 5b and 5c. Similar effects
were also observed by Deep _ in an experimental study of

shock-induced separation on a cone-cylinder frustum.

It is interesting to note that, due to the thickdhing of the

boundary layer and the larger separation on the leeward, the

M. = 2.8

t P . 1o,°
/x

_, deg 90 _ al

M_, - 2.8 /_

Re L - 008 X 10 6 /'__

;
D " 101.6mm II'i'LI/IItI',INY, Yd'XXf_

L - mr. 11t1 1'/7'b¢ I

P x

180

Fig. 9 Three-dimensional plots of surface pressure.
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SEPARATION \

SECONDARY

Cf RECIRCULATION

REATTACHMENT

ION _

$ - 0"
;_'-_.v_ 180°

SEPARATION " _/"_ _/)_i

S CONDARV
RECIRCULATION _/'

g x i,r.,
REATTACHMENT

Fig. 10 Three-dimensional plots of skin friction along slreamwis¢
direction.

leeward surface pressure rises gradually and shows a sub-
stantial difference from the inviscid solution, while the

windward surface pressure rises sharply and shows less

viscous effects. This results in a peak of normal force

distribution near the flare juncture, as shown in Figs. 6a and

6b. Also shown in the figures are inviscid solutions using the

Syvertson and Dennis _e shock expansion method. At small

angle of attack, a = I deg, the surface pressure on the leeward

can be higher than that on the windward (Fig. 5b) near the
streamwise separation point on the lee side, which causes a
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Plots of static pressure on (r-_) planes at two x- locations.

_, deg

t,
,,-+ .-. ;_:_-_::_4. _7-•'-z: .-'+.+7-._

c) _ 180

(r - rb)

Fig. 12 Plots of static pressure on (x-r) planes at three meridian

angles.

small negative normal force distribution in front of the flare

(Fig. 6a). In general, the present computed results closely

predict the basic features observed by the experiments.
Figures 7 and 8 show unwrapped velocity plots, u' vs w, at

several radial levels for two incident angles, respectively. They

clearly indicate the variation of streamwise recirculation with

meridian angle.
• One of the most striking features is that, due to the com-

bination of streamwise recirculation and lee-side crossflow

separation, there exists a pair of vortices which become
stretched and are shed into the "wake." At small incidence,

= I deg, the vortex is weak and not clear. At a = 4 deg, a pair

of vortices is clearly formed and the feature is very similar to

the experimental observation of Ericsson et al.I shown in Fig.

2. A similar vortex pattern has also been observed on the nose
of an inclined hemisphere-cylinder by Hsieh and Wang. 19

The variations of surface pressure and streamwise skin-

friction coefficient are shown in Figs. 9 and 10. Note that

both Figs. 10a and 10b indicate a small secondary recir-

culation in the 71 direction around the lee side. This type of

secondary recirculation has been observed in many three-

dimensional experiments; see, for instance, Ref. 20. But in the

present study, since there is a small pressure oscillation (see

Figs. 9a and 9b) associated with numerical error due to body
discontinuity and sharp pressure rise near the juncture, the

observation is inconclusive and further investigation with
better mesh resolution is needed. Figure 11 shows plots of

static pressure fields on (r-_) planes at two x locations and

Fig. 12 shows those on (x- r) planes at three meridian angles:

4_-- 0, 90, and 180 deg. At _ = 90 and 180 deg (Figs. 12b and

12c) a strong overexpansion, coupled with the leading edge

and flare-shock compression, is clearly shown.
The three-dimensional program is coded in such a way as to

permit treatment of a general body of revolution, with

rb=f(x). In the present numerical procedure for com-
putation based on the thin-layer approximation, the program

requires 0.00048 s per grid point per time-step on a CDC 7600.

With a grid of 45 x34x20, it takes about 1.25 h of com-

putation time for a converged steady solution. The option of
solving the complete Navier-Stokes equations is also coded; it

requires about 25% more computation time. For the present
cases, results from the thin-layer approximation and the

complete Navier-Stokes equations agree within 3%.

Concluding Remarks

A supersonic laminar flow over an inclined body of
revolution has been numerically calculated. The time-

dependent compressible Navier-Stokes equations, with and
without a thin-layer approximation, were solved by a rapid,

mixed explicit-implicit numerical scheme. Good agreement
was obtained between computed and experimental results for

surface pressure at different meridian angles and normal
force distribution. The results show that the crossflow: 1)

effectively transfers low or negative momentum fluid to the
leeward; 2) causes small separation on the windward and large

separation on the leeward; 3) leads to a sharp pressure rise on
the windward, and a smooth turning of streamlines and a

gradual pressure rise on the leeward; and 4) results in a peak
in the normal force distribution near the cylinder-flare

juncture, and a pair of vortices on the leeward.
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